Skip to main content

Publications

Explore our published research and scientific contributions in immunoinformatics, vaccine design, and computational biology.

In Vitro Analysis of Tandem Peptides from Human CD5 and CD6 Scavenger Receptors as Potential Anti-Cryptococcal Agents

Journal of Fungi (2024) DOI: 10.3390/jof10100667
Authors:
Cryptococcus neoformans is included in the World Health Organization fungal priority pathogen list, complied to expedite improved research and public-health interventions. The limited number of available antifungal drugs, their associated toxicity, and the emergence of drug-resistant strains make the development of new therapeutic strategies mandatory. Pattern-recognition receptors (PRRs) from the host's innate immune system constitute a potential source of new antimicrobial agents. CD5 and CD6 are lymphoid members of the ancient scavenger receptor cysteine-rich superfamily (SRCR-SF) which bind pathogen-associated molecular patterns (PAMPs) of fungal and bacterial origin. Evidence supports the concept that such binding maps to 11-mer sequences present in each of their three SRCR extracellular domains. Herein, we have designed synthetic peptides containing tandems of such 11-mer sequences (namely CD5-T and CD6-T) and analyzed their C. neoformans-binding properties in vitro. Our results show both inhibitory effects on fungal growth and an ability to impact capsule formation and titanization, two critical virulence factors of C. neoformans involved in immune evasion. These effects hold promise for CD5-T and CD6-T peptides as single or adjuvant therapeutic agents against cryptococcosis.
CD5 CD6

Recombinant CD5 and CD6 Ectodomains Induce Antiparasitic and Immunomodulatory Effects in Secondary Cystic Echinococcosis

Parasite Immunology (2024) DOI: 10.1111/pim.13034
Authors:
Scavenger receptors participate in a wide range of biological functions after binding to multiple non-self or altered self-ligands. Among them, CD5 and CD6 are lymphocyte scavenger receptors known to interact with different microbial-associated molecular patterns, and the administration of the recombinant soluble ectodomains of human CD5 (rshCD5) and/or CD6 (rshCD6) has shown therapeutic/prophylactic potential in experimental models of fungal, bacterial and echinococcal infections. The latter is a zoonosis caused by the larval stage of the cestode parasite Echinococcus granulosus sensu lato, which in humans can induce secondary cystic echinococcosis (CE) after the spillage of protoscoleces contained within fertile cysts, either spontaneously or during surgical removal of primary hydatid cysts. Herein, we have analysed the mechanisms behind the significant protection observed in the mouse model of secondary CE following prophylactic administration of rshCD5 or rshCD6. Our results show that both molecules exhibit intrinsic antiparasitic activities in vitro, as well as immunomodulatory functions during early secondary CE, mainly through Th1/Th17 cytokine bias and promotion of peritoneal polyreactive antibodies. These data support the relevance of the parasite components bound by rshCD5 and rshCD6, as well as the potential of their prophylactic administration as a useful strategy to reduce secondary CE in patients.
Echinococcus granulosus CD5 CD6

Identification of Omega-class glutathione transferases in helminths of the Taeniidae family

Molecular and Biochemical Parasitology (2023) DOI: 10.1016/j.molbiopara.2023.111559
Authors:
Glutathione transferase enzymes (GSTs) are believed to be a major detoxification system in helminth parasites and have been associated with immunomodulation of the host response. Echinococcus granulosus sensu lato (s.l.) is a cestode parasite known to express at least five different GSTs, but no Omega-class enzymes have been reported in this parasite or in any other cestode. Herein we report the identification of a new member of the GST superfamily in E. granulosus s.l., which is phylogenetically related to the Omega-class: EgrGSTO. Through mass spectrometry, we showed that the 237 amino acids protein EgrGSTO is expressed by the parasite. Moreover, we identified homologues of EgrGSTO in other eight members of the Taeniidae family, including E. canadensis, E. multilocularis, E. oligarthrus, Hydatigera taeniaeformis, Taenia asiatica, T. multiceps, T. saginata and T. solium. A manual sequence inspection and rational modification yielded eight Taeniidae's GSTO sequences, each one encoding for a 237 aa polypeptide showing 80.2% overall identity. To the best of our knowledge, this is the first description of genes encoding for Omega-class GSTs in worms belonging to the Taeniidae family -that at least in E. granulosus s.l. is expressed as a protein- suggesting the gene encodes for a functional protein.
Echinococcus granulosus GST proteomics

Experimental cystic echinococcosis as a proof of concept for the development of peptide-based vaccines following a novel rational workflow

Authors:
Vaccines are among the most important advances in medicine throughout the human history. However, conventional vaccines exhibit several drawbacks in terms of design and production costs. Peptide-based vaccines are attractive alternatives, since they can be designed mainly in silico, can be produced cheaply and safely, and are able to induce immune responses exclusively towards protective epitopes. Yet, a proper peptide design is needed, not only to generate peptide-specific immune responses, but also for them to recognize the native protein in the occurrence of a natural infection. Herein, we propose a rational workflow for developing peptide-based vaccines including novel steps that assure the cross-recognition of native proteins. In this regard, we increased the probability of generating efficient antibodies through the selection of linear B-cell epitopes free of post-translational modifications followed by analyzing the 3D-structure similarity between the peptide in-solution vs. within its parental native protein. As a proof of concept, this workflow was applied to a set of seven previously suggested potential protective antigens against the infection by Echinococcus granulosus sensu lato. Finally, two peptides were obtained showing the capacity to induce specific antibodies able to exert anti-parasite activities in different in vitro settings, as well as to provide significant protection in the murine model of secondary echinococcosis.
Echinococcus granulosus vaccine bioinformatics immunoinformatics

Expanding the family of Mu-class glutathione transferases in the cestode parasite Echinococcus granulosus sensu lato

Authors:
Glutathione transferases (GSTs) perform catalytic and non-catalytic activities, mostly involved in stress-response and cell detoxification. Helminth parasites express several GSTs of multiple classes that are involved in the neutralization of potentially harmful oxidants, and in the inactivation or removal of xenobiotics. Additionally, GSTs participate in immunomodulatory processes that facilitate the parasite establishment and survival within its host. In Echinococcus granulosus sensu lato (s.l.) -the cestode parasite responsible for cystic echinococcosis- only one Mu-class GST has been reported. In the present work, by using bioinformatic and proteomic approaches we searched for novel Mu-class GSTs potentially involved in the parasite oxidative-stress metabolism. In the genome of E. granulosus s.l., 6 GST-related sequences were found to constitute a strongly conserved phylogenetical clade with Mu-class members. Among them, 5 displayed conserved gene structure (exon/intron), as well as specific residues and motifs characteristic of Mu-class enzymes. By proteomic analysis, 3 Mu-GSTs were identified to be expressed in the protoscolex parasite stage, 2 of them being firstly described as Mu-class GSTs here. The existence of more than one productive Mu-GST gene expands the parasite xenobiotic phase II metabolism, which might have beneficial roles on E. granulosus s.l. ability to successfully infect its host.
Echinococcus granulosus GST proteomics

Unraveling post-translational modifications in Echinococcus granulosus sensu lato

Authors:
Echinococcus granulosus sensu lato (s.l.) is the helminth parasite responsible for cystic echinococcosis, a neglected tropical disease currently affecting millions of people worldwide. Incomplete knowledge on the parasite biochemistry contributes, at least partially, to the limited development of useful biotechnological advances for the infection control. In this sense, little information is available regarding post-translational modifications (PTMs) occurring in E. granulosus s.l. proteins, which ultimately may affect the performance of biotechnological products to be developed. Therefore, we report here a proteomic analysis of the parasite PTMs identified through FindMod software applied to a set of tegumental proteins previously characterized by mass spectrometry (MALDI-TOF/TOF) analysis of protein spots from a 2D electrophoresis gel. Manual searches for already annotated proteins exhibiting such PTMs were also performed within proteome databases of E. granulosus s.l. and other platyhelminthes. In addition, key enzymes involved in PTMs modifications were searched for within E. granulosus s.l. proteome. Finally, the presence of selected PTMs was further confirmed by a high-resolution proteomic approach (nanoLC-MS/MS). A set of 22 different PTMs most likely to be present in the parasite was suggested, 9 of them with high confidence as they were identified in the same m/z fragment by both proteomic techniques (acetylation, deamidation, deamidation followed by methylation, mono- and di-hydroxylation, mono- and di-methylation, S-nitrosylation and phosphorylation). Interestingly, 5 PTMs were herein identified for the first time in E. granulosus s.l. proteins. Our results expand the scarcely studied topic of PTMs in platyhelminthes.

Ultrastructural characterization of the tegument in protoscoleces of Echinococcus ortleppi

International Journal for Parasitology (2021) DOI: 10.1016/j.ijpara.2021.05.004
Authors:
Cystic echinococcosis is a globally distributed zoonosis caused by cestodes of the Echinococcus granulosus sensu lato (s.l.) complex, with Echinococcus ortleppi mainly involved in cattle infection. Protoscoleces show high developmental plasticity, being able to differentiate into either adult worms or metacestodes within definitive or intermediate hosts, respectively. Their outermost cellular layer is called the tegument, which is important in determining the infection outcome through its immunomodulating activities. Herein, we report an in-depth characterization of the tegument of E. ortleppi protoscoleces performed through a combination of scanning and transmission electron microscopy techniques. Using electron tomography, a three-dimensional reconstruction of the tegumental cellular territories was obtained, revealing a novel structure termed the 'tegumental vesicular body' (TVB). Vesicle-like structures, possibly involved in endocytic/exocytic routes, were found within the TVB as well as in the parasite glycocalyx, distal cytoplasm and close inner structures. Furthermore, parasite antigens (GST-1 and AgB) were unevenly localised within tegumental structures, with both being detected in vesicles found within the TBV. Finally, the presence of host (bovine) IgG was also assessed, suggesting a possible endocytic route in protoscoleces. Our data forms the basis for a better understanding of E. ortleppi and E. granulosus s.l. structural biology.
Echinococcus granulosus microscopy

Linking murine resistance to secondary cystic echinococcosis with antibody responses targeting Echinococcus granulosus tegumental antigens

Immunobiology (2020)
Authors:
10.1016/j.imbio.2020.151916 Successful establishment of a parasite infection depends partially on the host intrinsic susceptibility to the pathogen. In cystic echinococcosis (CE), a zoonotic disease caused by the cestode parasite Echinococcus granulosus, the infection outcome in the murine model of secondary CE varies according to the mouse strain used. In this regard, intrinsic differences in susceptibility to the infection were previously reported for Balb/c and C57Bl/6 mice, being C57Bl/6 animals less permissive to secondary CE. Induction of parasite-specific antibodies has been suggested to play relevant roles in such susceptibility/resistance phenomena. Here, we report an in deep comparison of antibody responses induced in both mouse strains. Firstly, only C57Bl/6 mice were shown to induce specific-antibodies with efficient anti-parasite activities during early secondary CE. Then, through ImmunoTEM and Serological Proteome Analysis (SERPA), an evaluation of specific antibody responses targeting parasite tegumental antigens was performed. Both strategies showed that infected C57Bl/6 mice -unlike Balb/c animals- narrowed their IgG recognition repertoire against tegumental antigens, targeting fewer but potentially more relevant parasite components. In this sense, tegumental antigens recognition between Balb/c and C57Bl/6 mice, either by natural and/or induced antibodies, was analyzed through SERPA and MALDI-TOF/TOF studies. A total of 13 differentially recognized proteins (DRPs) uniquely targeted by antibodies from C57Bl/6 mice were successfully identified, wherein a subset of 7 DRPs were only recognized by infection-induced antibodies, suggesting their potential as natural protective antigens. In this regard, immunoinformatic analyses showed that such DRPs exhibited higher numbers of possible T cell epitopes towards the H-2-IAb haplotype, which is present in C57Bl/6 mice but absent in Balb/c animals. In summary, our results showed that the genetic predisposition to generate better T-dependent antibody responses against particular tegumental antigens might be a key factor influencing host susceptibility in the murine model of secondary CE.
Echinococcus granulosus immunoinformatics

Polyreactive antibodies as potential humoral biomarkers of host resistance to cystic echinococcosis

Parasite Immunology (2020) DOI: 10.1111/pim.12802
Authors:
Polyreactive antibodies (pAb) bind to a broad range of unrelated structures, providing hosts with functional components able to rapidly recognize and protect against different pathogens. However, their roles against helminth parasites are still unexplored. Here, pAb profiles were analysed in cystic echinococcosis (CE), a zoonosis caused by the cestode Echinococcus granulosus sensu lato. Levels of anti-DNP (2,4-dinitrophenyl-hapten) antibodies were measured as a surrogate parameter of pAb in different biological settings. Firstly, levels of serum and peritoneal pAb were measured during early experimental secondary CE, using both high (Balb/c) and low (C57Bl/6) susceptible mouse strains. Serum pAb mostly differed in normal mice, being pAb levels of IgG subclasses with poor anti-parasite activities predominant in Balb/c animals. Conversely, peritoneal pAb isotypes/subclasses with efficient anti-parasite activities predominated in normal and infected C57Bl/6 mice. Secondly, sera from potentially resistant patients, susceptible individuals and healthy donors were analysed, showing higher pAb levels of the IgA and IgG-particularly IgG1-isotypes in potentially resistant individuals compared to control groups. Finally, since remarkable differences were observed in pAb profiles according to the intrinsic host susceptibility to the infection, we proposed here that pAb might be considered as potential humoral biomarkers for host resistance to CE.

Interactome analysis of CD5 and CD6 ectodomains with tegumental antigens from the helminth parasite Echinococcus granulosus sensu lato

International Journal of Biological Macromolecules (2020) DOI: 10.1016/j.ijbiomac.2020.08.219
Authors:
Echinococcus granulosus sensu lato (s.l.) is a cestode parasite affecting both human and livestock health. Recombinant ectodomains of human scavenger receptors CD5 (rshCD5) and CD6 (rshCD6) were previously reported to bind its tegumental antigens and to exert prophylactic effects in a murine model of infection. Although the properties of mammalian scavenger receptors include the binding to diverse pathogen-derived structures, their interaction with helminth parasites has been scarcely explored. Therefore, we report here a search for CD5 and CD6 interactors within E. granulosus s.l. antigens. Mass spectrometry analysis of pull-downs from soluble tegumental components with biotinylated rshCD5 and rshCD6 resulted in 17 and 11 overrepresented interactors, respectively, 8 of which were shared. The interactors included previously reported protective molecules against E. granulosus s.l. and/or other helminths. Similar studies performed with 11-mer peptides mapping to each of the three extracellular scavenger domains of CD5 and CD6 allowed an estimated molecular topology of the interactions. In conclusion, the fact that most helminth interactors identified for rshCD5 and rshCD6 were already reported as vaccine candidates or pharmacological targets against different helminthiases, supports the view that their beneficial effects in experimental infection results from binding to multiple relevant tegumental antigens.
Echinococcus granulosus CD5 CD6

Linking murine resistance to secondary cystic echinococcosis with antibody responses targeting Echinococcus granulosus tegumental antigens

Immunobiology (2020) DOI: 10.1016/j.imbio.2020.151916
Authors:
Successful establishment of a parasite infection depends partially on the host intrinsic susceptibility to the pathogen. In cystic echinococcosis (CE), a zoonotic disease caused by the cestode parasite Echinococcus granulosus, the infection outcome in the murine model of secondary CE varies according to the mouse strain used. In this regard, intrinsic differences in susceptibility to the infection were previously reported for Balb/c and C57Bl/6 mice, being C57Bl/6 animals less permissive to secondary CE. Induction of parasite-specific antibodies has been suggested to play relevant roles in such susceptibility/resistance phenomena. Here, we report an in deep comparison of antibody responses induced in both mouse strains. Firstly, only C57Bl/6 mice were shown to induce specific-antibodies with efficient anti-parasite activities during early secondary CE. Then, through ImmunoTEM and Serological Proteome Analysis (SERPA), an evaluation of specific antibody responses targeting parasite tegumental antigens was performed. Both strategies showed that infected C57Bl/6 mice -unlike Balb/c animals- narrowed their IgG recognition repertoire against tegumental antigens, targeting fewer but potentially more relevant parasite components. In this sense, tegumental antigens recognition between Balb/c and C57Bl/6 mice, either by natural and/or induced antibodies, was analyzed through SERPA and MALDI-TOF/TOF studies. A total of 13 differentially recognized proteins (DRPs) uniquely targeted by antibodies from C57Bl/6 mice were successfully identified, wherein a subset of 7 DRPs were only recognized by infection-induced antibodies, suggesting their potential as natural protective antigens. In this regard, immunoinformatic analyses showed that such DRPs exhibited higher numbers of possible T cell epitopes towards the H-2-IAb haplotype, which is present in C57Bl/6 mice but absent in Balb/c animals. In summary, our results showed that the genetic predisposition to generate better T-dependent antibody responses against particular tegumental antigens might be a key factor influencing host susceptibility in the murine model of secondary CE.
Echinococcus granulosus vaccine

Combining proteomics and bioinformatics to explore novel tegumental antigens as vaccine candidates against <i>Echinococcus granulosus</i> infection

Journal of Cellular Biochemistry (2019) DOI: 10.1002/jcb.28799
Authors:
Echinococcus granulosus is the parasite responsible for cystic echinococcosis (CE), an important worldwide-distributed zoonosis. New effective vaccines against CE could potentially have great economic and health benefits. Here, we describe an innovative vaccine design scheme starting from an antigenic fraction enriched in tegumental antigens from the protoscolex stage (termed PSEx) already known to induce protection against CE. We first used mass spectrometry to characterize the protein composition of PSEx followed by Gene Ontology analysis to study the potential Biological Processes, Molecular Functions, and Cellular Localizations of the identified proteins. Following, antigenicity predictions and determination of conservancy degree against other organisms were determined. Thus, nine novel proteins were identified as potential vaccine candidates. Furthermore, linear B cell epitopes free of posttranslational modifications were predicted in the whole PSEx proteome through colocalization of in silico predicted epitopes within peptide fragments identified by matrix-assisted laser desorption/ionization-TOF/TOF. Resulting peptides were termed "clean linear B cell epitopes," and through BLASTp scanning against all nonhelminth proteins, those with 100% identity against any other protein were discarded. Then, the secondary structure was predicted for peptides and their corresponding proteins. Peptides with highly similar secondary structure respect to their parental protein were selected, and those potentially toxic and/or allergenic were discarded. Finally, the selected clean linear B cell epitopes were mapped within their corresponding 3D-modeled protein to analyze their possible antibody accessibilities, resulting in 14 putative peptide vaccine candidates. We propose nine novel proteins and 14 peptides to be further tested as vaccine candidates against CE.
Echinococcus granulosus bioinformatics immunoinformatics

Inefficient and abortive classical complement pathway activation by the calcium inositol hexakisphosphate component of the Echinococcus granulosus laminated layer

Immunobiology (2019) DOI: 10.1016/j.imbio.2019.05.009
Authors:
Persistent extracellular tissue-dwelling pathogens face the challenge of antibody-dependent activation of the classical complement pathway (CCP). A prime example of this situation is the larva of the cestode Echinococcus granulosus sensu lato, causing cystic echinococcosis. This tissue-dwelling, bladder-like larva is bounded by a cellular layer protected by the outermost acellular "laminated layer" (LL), to which host antibodies bind. The LL is made up of a mucin meshwork and interspersed nano-deposits of calcium inositol hexakisphosphate (calcium InsP6). We previously reported that calcium InsP6 bound C1q, apparently initiating CCP activation. The present work dissects CCP activation on the LL. Most of the C1 binding activity in the LL corresponded to calcium InsP6, and this binding was enhanced by partial proteolysis of the mucin meshwork. The remaining C1 binding activity was attributable to host antibodies, which included CCP-activating IgG isotypes. Calcium InsP6 made only a weak contribution to early CCP activation on the LL, suggesting inefficient C1 complex activation as reported for other polyanions. CCP activation on calcium InsP6 gave rise to a dominant population of C3b deposited onto calcium InsP6 itself that appeared to be quickly inactivated. Apparently as a result of inefficient initiation plus C3b inactivation, calcium InsP6 made no net contribution to C5 activation. We propose that the LL protects the underlying parasite cells from CCP activation through the combined effects of inefficient permeation of C1 through the mucins and C1 retention on calcium InsP6. This mechanism does not result in C5 activation, which is known to drive parasite-damaging inflammation.
Echinococcus granulosus complement

The ectodomains of the lymphocyte scavenger receptors CD5 and CD6 interact with tegumental antigens from Echinococcus granulosus sensu lato and protect mice against secondary cystic echinococcosis

PLOS Neglected Tropical Diseases (2018) DOI: 10.1371/journal.pntd.0006891
Authors:
Background: Scavenger Receptors (SRs) from the host's innate immune system are known to bind multiple ligands to promote the removal of non-self or altered-self targets. CD5 and CD6 are two highly homologous class I SRs mainly expressed on all T cells and the B1a cell subset, and involved in the fine tuning of activation and differentiation signals delivered by the antigen-specific receptors (TCR and BCR, respectively), to which they physically associate. Additionally, CD5 and CD6 have been shown to interact with and sense the presence of conserved pathogen-associated structures from bacteria, fungi and/or viruses. Methodology/principal findings: We report herein the interaction of CD5 and CD6 lymphocyte surface receptors with Echinococcus granulosus sensu lato (s.l.). Binding studies show that both soluble and membrane-bound forms of CD5 and CD6 bind to intact viable protoscoleces from E. granulosus s.l. through recognition of metaperiodate-resistant tegumental components. Proteomic analyses allowed identification of thioredoxin peroxidase for CD5, and peptidyl-prolyl cis-trans isomerase (cyclophilin) and endophilin B1 (antigen P-29) for CD6, as their potential interactors. Further in vitro assays demonstrate that membrane-bound or soluble CD5 and CD6 forms differentially modulate the pro- and anti-inflammatory cytokine release induced following peritoneal cells exposure to E. granulosus s.l. tegumental components. Importantly, prophylactic infusion of soluble CD5 or CD6 significantly ameliorated the infection outcome in the mouse model of secondary cystic echinococcosis. Conclusions/significance: Taken together, the results expand the pathogen binding properties of CD5 and CD6 and provide novel evidence for their therapeutic potential in human cystic echinococcosis.
Echinococcus granulosus CD5 CD6

Ageing impairs parasite‐specific antibody responses in cystic echinococcosis

Parasite Immunology (2017) DOI: 10.1111/pim.12505
Authors:
Humoral immunity wanes during healthy ageing, increasing susceptibility to infections in the elderly. In this sense, information about parasite infections and human immunosenescence is scarce. Cystic echinococcosis (CE) is an infectious disease caused by the larval stage of the cestode parasite Echinococcus granulosus, whose prevalence in humans shows an increase with host age. Susceptibility to human CE has been associated with humoral immunity to some extent, and, therefore, we have here analysed the influence of host age on the serological profile of young, middle-aged and aged patients. Our results highlighted the detrimental influence of ageing on the intensity and quality of the antiparasite antibody response. Remarkable differences in serological profiles between young and aged individuals were observed. In this sense, through Principal Components Analysis, we identified aged patients as those exhibiting overall less intense antibody responses, mainly in isotypes/subclasses supposed to exert efficient antiparasite activities (eg IgE and IgG1). Thus, these humoral defects could at least partially explain the reported increase in CE prevalence among older individuals, as a weaker immune response in the elderly might facilitate the establishment and maintenance of the parasite infection. Finally, a possible association between age-dependent susceptibility to CE and host immunosenescence is discussed.
Echinococcus granulosus

Identification of universal diagnostic peptide candidates for neglected tropical diseases caused by cestodes through the integration of multi-genome-wide analyses and immunoinformatic predictions

Infection, Genetics and Evolution (2017) DOI: 10.1016/j.meegid.2017.07.020
Authors:
Neglected tropical diseases caused by helminth infections currently affect millions of people worldwide. Among them, there are three tapeworm species of outstanding importance: Echinococcus granulosus, E. multilocularis, and Taenia solium, which are responsible for cystic echinococcosis, alveolar echinococcosis, and cysticercosis, respectively. Despite several attempts, there is still a need for an effective and low-cost serological diagnostic test that can be used in endemic countries. In the present work, we described an innovative bioinformatic workflow for a rational prediction of putative peptide candidates for one-step serological diagnosis of any of these infections. First, we predicted the theoretical secretome shared by the three tapeworms starting from their full reported proteomes. Then, through immunoinformatics, we identified proteins within the shared secretome displaying high antigenicity scores and bearing T cell epitopes able to bind most human MHC-II alleles. Secondly, in such proteins, we identified linear B cell epitopes without post-translational modifications, and mapped them on 3D modelled structures to visualize their antibody accessibilities. As a result, we finally suggested two antigenic peptides shared between the secretomes of the three parasite species, which could be further tested for their immunodiagnostic potential.
Echinococcus granulosus bioinformatics immunoinformatics

Antibody profiling in ultrasound normal individuals with positive serology for cystic echinococcosis

Parasite Immunology (2016) DOI: 10.1111/pim.12302
Authors:
Cystic echinococcosis is a zoonotic disease caused by the cestode parasite Echinococcus granulosus. In endemic regions, seropositive individuals to E. granulosus usually and markedly outnumber image-confirmed cases of cystic echinococcosis, suggesting that some parasite challenges derive in unsuccessful infection establishments. However, it is still unknown whether such parasite-specific antibodies in healthy individuals might play a role in resistance/susceptibility to the infection. Therefore, we have here analysed the profile of antibodies recognizing E. granulosus antigens in seropositive but ultrasound normal individuals, as well as in surgery-confirmed patients and healthy donors. Our results showed that ultrasound normal individuals exhibited low avidity IgG antibodies, as well as low levels of parasite-specific IgG1 and IgG4 antibodies. In addition, they displayed significant levels of specific IgE, and thus, they revealed a uniquely high IgE:IgG4 ratio. Moreover, high levels of parasite-specific IgM were detected in such individuals, which showed characteristics of natural cross-reacting antibodies. Therefore, our results indicate that ultrasound normal individuals but seropositive for E. granulosus antigens exhibit a distinctive antibody profile. In this regard, possible associations between their antiparasite antibodies and potential resistance mechanisms to cystic echinococcosis are discussed.
Echinococcus granulosus